Modelling of dispersant application to oil spills in shallow coastal waters

نویسندگان

  • Mark Reed
  • Per Daling
  • Alun Lewis
  • May Kristin Ditlevsen
  • Bård Brørs
  • James Clark
  • Don Aurand
چکیده

Application of dispersants in shallow water remains an issue of debate within the spill response community. An experimental oil spill to evaluate potential environmental impacts and benefits of applying dispersants to spills in shallow water has therefore been under consideration. One site being considered was Matagorda Bay, on the Texas coast. Coupled three-dimensional oil spill and hydrodynamic models were used to assist in the design of such an experiment. The purpose of the modeling work was to map hydrocarbon concentration contours in the water column and on the seafloor as a function of time following dispersant application. These results could assist in determining the potential environmental impact of the experiment, as well as guiding the water column sampling activities during the experiment itself. Eight potential experimental oil spill scenarios, each of 10 bbl in volume, were evaluated: 4 release points, each under two alternate wind conditions. All scenarios included application of chemical dispersants to the slick shortly after release. Slick lifetimes were under 5 h. Due to the shallow depths, some fraction (2–7%) of the released hydrocarbons became associated with bottom sediments. The algorithms used for the oil droplet—sediment interactions are theoretical, and have not been verified or tested against experimental data, so the mass balances computed here must be considered tentative. Currents computed by the hydrodynamic model are consistent with previous observations: the circulation is largely tidally driven, especially near the ship channel entrance. In the center of the bay, the circulation appears relatively weak. The use of water column drifters with surface markers during the experiment would augment model results in assisting activities to monitor concentrations. These simulations suggest that the eventual behavior of an oil droplet cloud in the middle of the bay will be relatively insensitive to release point or time in the tidal cycle. A limited analysis was run to evaluate model sensitivity to the oil-sediment sorption coefficient. Increasing this coefficient by a factor of 10 results in an approximately linear increase in the fraction of oil in the sediments. Sensitivity of estimated time-to-zerovolume for the 0.1-ppm concentration contour demonstrated that the model prediction of 3.5 days was associated with an uncertainty of ±12 h for a release of 10 barrels. This time estimate is also a function of the oil-sediment interaction rate, since more oil in the sediments means less oil in the water column.  2003 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The use of chemical dispersants to combat oil spills at sea: A review of practice and research needs in Europe.

In order to better understand the practice of dispersant use, a review has been undertaken of marine oil spills over a 10 year period (1995-2005), looking in particular at variations between different regions and oil-types. This viewpoint presents and analyses the review data and examines a range of dispersant use policies. The paper also discusses the need for a reasoned approach to dispersant...

متن کامل

Effects of oil exposure and dispersant use upon environmental adaptation performance and fitness in the European sea bass, Dicentrarchus labrax.

The worldwide increasing recourse to chemical dispersants to deal with oil spills in marine coastal ecosystems is a controversial issue. Yet, there exists no adequate methodology that can provide reliable predictions of how oil and dispersant-treated oil can affect relevant organism or population-level performance. The primary objective of the present study was to examine and compare the effect...

متن کامل

Formulation of a Commercial Biosurfactant for Application as a Dispersant of Petroleum and By-Products Spilled in Oceans

Oil spills in oceans cause irreparable damage to marine life and harm the coastal populations of affected areas. It is therefore fundamental to develop treatment strategies for such spills. Currently, chemical dispersants have been used during oil spills, although these agents have been increasingly restricted due to their toxic potential. Thus, the aim of the present study was to formulate a b...

متن کامل

Attachment of a hydrophobically modified biopolymer at the oil-water interface in the treatment of oil spills.

The stability of crude oil droplets formed by adding chemical dispersants can be considerably enhanced by the use of the biopolymer, hydrophobically modified chitosan. Turbidimetric analyses show that emulsions of crude oil in saline water prepared using a combination of the biopolymer and the well-studied chemical dispersant (Corexit 9500A) remain stable for extended periods in comparison to e...

متن کامل

Novel Pathways for Injury from Offshore Oil Spills: Direct, Sublethal and Indirect Effects of the Deepwater Horizon Oil Spill on Pelagic Sargassum Communities

The pelagic brown alga Sargassum forms an oasis of biodiversity and productivity in an otherwise featureless ocean surface. The vast pool of oil resulting from the Deepwater Horizon oil spill came into contact with a large portion of the Gulf of Mexico's floating Sargassum mats. Aerial surveys performed during and after the oil spill show compelling evidence of loss and subsequent recovery of S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Modelling and Software

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2004